

Utilización del módulo MES-1C con RCM3720

Nota de Aplicación
CoAN-000
Publicado: 00/00/0000
Página 1 de 1

Revisión	Fecha	Comentario	Autor
0	21/01/2008	Módulo: OTH-BFS-C1 (MES-1C) Placa: SAL S1 ver 1.1	Ulises Bigliati
		Data sheet: Fingerprint Embedded System Module SDK Revision V 1.4	

1. Objetivo:

Utilizar el módulo de reconocimiento de huellas dactilares MES-1C demostrando la forma de utilización de la mayoría de sus comandos. Se ejecutarán así las operaciones habituales con este tipo de dispositivos, a saber:

- -Enroll en flash,
- -Autentificación contra flash,
- -Download de templates (flash ->host),
- -Captura de huella y download (RAM ->host),
- -Upload de templates (host ->flash),
- -Verificación on-line en RAM (host -> RAM)

Y las operaciones de borrado:

- -Eliminar un template mediante lectura de huella original.
- -Eliminar un template mediante su ID.
- -Eliminar todos los templates.

2. Implementación

Las prácticas fueron realizadas primeramente conectando al módulo MES-1C al puerto serie de una PC mediante el circuito adaptador de señal correspondiente, y utilizando un software emulador de terminal para enviar los comandos, una vez obtenidos los primeros resultados se continuó desarrollando la demostración sobre un microprocesador Rabbit 3000, más precisamente un módulo RCM3720 con Dynamic C 9.52 como entorno de desarrollo. Como se verá mas adelante, se utilizó uno de los puertos serie del microprocesador Rabbit para establecer la comunicación mas un pin de entrada salida standard para detectar la presencia de la huella dactilar sobre el sensor.

2.1. Hardware

En esta sección se describirán brevemente las características del dispositivo. Esta descripción intenta abordar algunos detalles no especificados en las hojas de datos con la intención de que el usuario logre sacar provecho de este producto mas rápidamente.

El MES-1C es un dispositivo de reconocimiento de huellas dactilares, con capacidad de verificación 1:1 e identificación 1:N con una capacidad de almacenamiento en memoria flash para 200 huellas. Adicionalmente se cuenta con la funcionalidad de bajar y subir los templates (el producto comprimido del procesamiento de la imagen de una huella dactilar) desde y hacia el módulo, por lo cual se hace posible la verificación 1:N virtualmente ilimitada, siempre y cuando el usuario se identifique por otro medio al momento de efectuar la consulta a la base de datos del host y así enviar posteriormente el template al módulo para su verificación contra la huella dactilar recientemente capturada en RAM, se darán mayores detalles de esta operación más adelante.

Continuando con las características del módulo, se destaca que éste resuelve todo el problema de la captura, enrollment y verificación o identificación de las huellas dactilares. Es un producto OEM, con un LEDs bicolor, un sensor semiconductor de huellas, y admite la posibilidad de colocar un switch en su placa (identificado como JP2 en el circuito impreso) para utilizarlo como señalización para que el host reconozca la presencia de una huella esperando por ser leída. Si este switch es colocado, puede leerse su estado lógico en el quinto cable de los seis que forman parte de la interfaz, normalmente colocandole una resistencia de pull-up.

La interfaz con el host es un port serie a 9600bps, 8 bits de datos, sin paridad y sin flow control, con nivel de señal de 3,3V y 5V-tolerant.

Nota de Aplicación	
CoAN-000	
Publicado: 00/00/0000	
Página 2 de 2	

Utilización del módulo MES-1C con RCM3720

Un sexto cable, sería utilizado para proveer la alimentación de 5V al sensor de huella dactilar, de forma tal de poder alimentarlo solo al momento de ser utilizado a fines de reducir el consumo.

Sin embargo, esto último puede evitarse realizando una sencilla modificación en la placa del circuito impreso del módulo, esto es:

- 1. Remover la resistencia R102.
- 2. Montar las resistencia R5 (valor 0 ohms) ubicada inmediatamente debajo del regulador U8.
- 3. Montar las resistencia sin nomenclatura (valor 0 ohms) ubicada inmediatamente a la izquierda y arriba con respecto a la resistencia R102.

De esta forma, el sexto cable destinado a la alimentación del sensor puede ignorarse.

Si señor lector, tiene usted razón, con jumpers sería mejor...

Una consideración importante es la siguiente:

El módulo MES-1C ingresa en el modo "deep sleep" automaticamente luego de 30 segundos de no haber recibido ningún comando. El módo "deep sleep" únicamente puede abandonarse reseteando el dispositivo. Como resultado se sugiere incluir un circuito de control para la alimentación del modulo mediante el cual se pueda resetear el módulo para retornar al modo de recepción de comandos.

El LED bicolor, se enciente en rojo, verde o naranja, según el estado de la operación en curso y al recibir comandos desde el host. Cabe destacar que al encenderse el módulo y/o al estar en espera de comandos el led permanece apagado.

En cuanto al protocolo de comunicación, los comandos y respuestas viajan en paquetes en formato binario, que incluyen secuencias de bytes de encabezado y terminación.

Los resultados de una operación se obtienen como parsing del paquete de respuesta, ubicando el área del dato, en formatos fijos que varían de acuerdo al comando enviado.

2.2. La interfaz de comandos

2.2.1. Formato de comandos

Realizaremos una breve descripción de la interfaz de comandos que son interpretados por el módulo intentando utilizar un enfoque práctico, el formato para el envío de los comandos se detalla a continuación:

Los siguientes comandos se envían con el formato indicado debajo de la tabla:

0x50	Capture fingerprint
0x51	Download fingerprint template
0xA4	Download template in flash memory slot
0x24	Identify against in flash memory slot 001 to 200
0xA1	Write RAM data to flash memory slot location (ID)
0xA5	Security level setup
0x22	Erase template (ID) in flash memory slot
0xA2	Clear template (ID) in flash memory slot
0xA6	Delete all template in flash memory slot
0x21	Enroll ID in flash memory slot 001 to 200

	UART ID	RPC Packet Length	RPC Request Start	RPC Packet Length-2	Command ID	ID	UART ID	RPC Packet Length	RPC Request End
Ī	0x02	0x04	0x01	0x02			0x02	0x01	0x03

Nota de Aplicación CoAN-000 Publicado: 00/00/0000

Utilización del módulo MES-1C con RCM3720

Página 3 de 3

Los dos comandos que se detallan a continuación se utilizan para el upload de templates hacia el módulo y utilizan el siguiente formato:

0x52 Upload fingerprint template to SRAM

LIADT	RPC	RPC	RPC	G 1	ED	HADT	RPC	RPC	RPC	ED	TIADT	RPC	RPC
UART	Packet	Request	Packet	Command	FP	UART	Packet	Request	Packet	11	UART	Packet	Request
ID	Length	Start	Length-2	ID	Data	ID	Length	Start	Length-2	Data	ID	Length	End
0x02	0xDF	0x01	0xDD	0x52	220byte	0x02	0x8E	0x02	0x8C	140byte	0x02	0x01	0x03

0x53 Verify against in SRAM

Γ,	UART	RPC	RPC	RPC	Cammand	Number	FD	HADT	RPC	RPC	RPC	ED	HADT	RPC	RPC
- '	ID	Packet	Request	Packet	Command	Of	Data	UART	Packet	Request	Packet	FP Data	UART	Packet	Request
	עו	Length	Start	Length-2	עו	FP	Data	1111	Length	Start	Length-2	Data		Length	End
	0x02	0xE0	0x01	0xDE	0x53	0x01	220byte	0x02	0x8E	0x02	0x8C	140byte	0x02	0x01	0x03

2.2.2. Formato de respuestas

A continuación se indican las respuestas que deben esperarse luego de enviarse un comando con la forma especificada en el apartado anterior.

0x21	Enroll ID in flash memory slot 001 to 200
OALI	Elifon IB in flash memory slot our to 200

Respuesta:

CMD = 0x21 y COD= ID =>Sucessful

CMD = 0x21 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0x02	0x04	0x04	0x02	0x41	0x01	0x02	0x01	0x06	0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta (falla en la operación)

Error:

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06

0x24 Identify against in flash memory slot 001 to 200 (COD=0xFF)

Respuesta:

CMD = 0x24 y COD = ID => Successful

CMD = 0x24 y COD = 0xFF => Fail

		2															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0x02	0x04	0x04	0x02	0x41	0x01	0x02	0x01	0x06	0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta (falla en la operación)

Error:

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06

Nota de Aplicación CoAN-000 Publicado: 00/00/0000

Utilización del módulo MES-1C con RCM3720

Página 4 de 4

0x22 Erase template (ID) in flash memory slot

Respuesta:

CMD = 0x22 y COD = ID => Successful

CMD = 0x22 y COD = 0xFF =>Fail

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0x02	0x04	0x04	0x02	0x41	0x01	0x02	0x01	0x06	0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta Error: (falla en la operación)

1	2	3	4	5	6	7	8	9	
0x0	2 0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06	

OxA2 Clear template (ID) in flash memory slot	
---	--

Respuesta:

CMD = 0xA2 y COD = ID => Successful

CMD = 0xA2 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta Error: (falla en la operación)

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06

0xA6	Delete all template in flash memory slot (COD=0xFF)
------	---

Respuesta:

 $\overrightarrow{CMD} = 0x22 \text{ y COD} = ID => Successful}$

CMD = 0x22 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta Error: (falla en la operación)

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06

0x51 Download fingerprint template (COD=0xFF)

1	2	3	4	5	6	7	 226	227	228	229	230	231	 370	371	372
0x02	0xE0	0x04	0xDE	0x51	0x01	FPD	 FPD	0x02	0x8E	0x02	0x8C	FPD	 FPD	0x02	0x02
						001	220					001	140		1

373	374
0x06	0x00

Si hay algún error, la longitud de la respuesta será distinta de 370 bytes.

Nota de Aplicación CoAN-000

Publicado: 00/00/0000

5

Utilización del módulo MES-1C con RCM3720

Página	5	de

0xA4

Download template in flash memory slot

Respuesta:

1	2	3	 222	223	224	225	 364	365	366	367	368	369	370
0x02	0xDC	FPD	 FPD	0x02	0X8C	FPD	 FPD	0x02	0x04	0x55	0xAA	0x55	0xAA
		001	220			001	140						

Si hay algún error, la longitud de la respuesta será distinta de 370 bytes.

0x50 Capture fingerprint (COD=0xFF)

Respuesta:

CMD = 0x50 y COD = 0x01 = > Successful

CMD = 0x50 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0x02	0x04	0x04	0x02	0x41	0x01	0x02	0x01	0x06	0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta Error: (falla en la operación)

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	0x41	0xFF	0x02	0x01	0x06

0x52 Upload fingerprint template to SRAM

Respuesta:

CMD = 0x52 y COD = 01 => Successful

 $CMD = 0x52 \text{ y COD} = 0xFF \Rightarrow Fail$

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

0x53 Verify against in SRAM

Respuesta:

CMD = 0x53 y COD = 00 => Successful

CMD = 0x53 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Nota de Aplicación CoAN-000 Publicado: 00/00/0000

Utilización del módulo MES-1C con RCM3720

Página 6 de 6

0xA1 Write RAM data to flash memory slot location (ID)

Respuesta:

CMD = 0xA1 y COD = ID => Successful

CMD = 0xA1 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Respuesta:

 $CMD = 0xA5 \text{ y COD} = \{0x20 \text{ (low)} | 0x30 \text{ (normal)} | 0x40 \text{ (high)} \} => Successful$

CMD = 0xA5 y COD = 0xFF => Fail

1	2	3	4	5	6	7	8	9
0x02	0x04	0x04	0x02	CMD	COD	0x02	0x01	0x06

Nota:

Cabe destacar que el módulo cada vez que se inicializa transmite una secuencia de caracteres de ésta forma:

0xE0 0x02 0x04 0x04 0x02 0x20 0x01 0x02 0x06. Lo cual debería tenerse en cuenta ya que podría producir algún efecto no deseado si esos bytes se acumulan en el búffer de lectura del puerto serie.

2.3. El software

Las operaciones a realizar mediante el software de demostración serán las resumidas a continuación:

Lo básico:

Enrollment

Dedo en el sensor.

Envío de comando '0x21'.

Espera de 2 segundos aprox.

Parseo de la respuesta recibida en búffer. Si la operación tuvo éxito el template se almacena en flash para futuras operaciones.

Identificacion 1:N contra flash

Dedo en el sensor.

Envío de comando '0x24'.

Parseo de la respuesta recibida en búffer para comprobar el resultado.

Las operaciones de borrado:

Erase fingerprint

Dedo en el sensor.

Envío de comando '0x22'.

Parseo de la respuesta recibida en búffer. Si la operación tuvo éxito, el template correspondiente a esa huella se borra de la memoria flash.

Nota de Aplicación
CoAN-000
Publicado: 00/00/0000

Utilización del módulo MES-1C con RCM3720

Página 7 de 7

Clear fingerprint

Envío de comando '0xA2' junto al ID correspondiente al template que se quiere eliminar. Parseo de la respuesta recibida en búffer. Si la operación tuvo éxito, el template correspondiente a esa huella se borra de la memoria flash.

Clear all fingerprints

Envío de comando '0xA6'.

Parseo de la respuesta recibida en búffer. Si la operación tuvo éxito, todos los templates se eliminan de la memoria flash.

Operaciones adicionales:

Descargar template almacenado en flash en el host

Envío del comando '0xA4' mas ID del template.

Si la operación tuvo éxito se obtiene un paquete conteniendo los 360 bytes del template solicitado.

Capturar una huella en RAM y descargar su template en el host

Dedo en el sensor sensor.

Enviar comando '0x50'.

Parsear la respuesta obtenida en el buffer, si tuvo éxito, enviar comando '0x51'.

Si la operación tuvo éxito se obtiene un paquete conteniendo los 360 bytes del template solicitado.

Verificacion 1:1 en RAM

Identificación del usuario contra el host

Dedo en el sensor

Envío del comando '0x50' para capturar la huella.

Parsear la respuesta obtenida en el buffer, si tuvo éxito, enviar comando '0x53' (upload fingerprint template y verificación) .

Parseo de la respuesta recibida en búffer para comprobar el resultado.

Upload template and save it into flash

Enviar comando '0x52'.

Parsear la respuesta obtenida en el búffer.

Enviar comando '0xA1' para grabar el template en flash.

Parseo de la respuesta recibida en búffer para comprobar el resultado.

El programa que implementará estas funcionalidades está destinado a utilizar un microprocesador Rabbit RCM3720, accediendo al puerto serial E de dicho hardware.

La notificación de la presencia de la huella dactilar sobre el sensor se obtiene mediante el accionamiento del switch instalado en la placa del módulo MES-1C conectado al pin 1 del puerto E. Se realizará la detección mediante polling de dicha entrada.

Por simplicidad no se utiliza circuitería de reset, por lo cual, una vez pasado un tiempo mayor a 30 segundo sin enviar comandos al módulo, será necesario resetearlo manualmente para continuar las pruebas.

Todas las funciones antes mencionadas están implementados con la ayuda de dos funciones:

- 1. SendCmd(char cmd, char param, int templateId);
- 2. GetResponse(char *buffer, int len).

Nota de Aplicación
CoAN-000
Publicado: 00/00/0000

Utilización del módulo MES-1C con RCM3720

Página 8 de 8

La primera se encarga de armar los paquetes y enviarlos por el puerto serial, mientras que la segunda es una co-función que aguarda un tiempo determinado mientras se recibe la cantidad de caracteres especificada por *len*. Por otra parte, a modo de debug también imprime los bytes del paquete recibido en formato hexadecimal.

Por lo demás, se trata solo de un sencillo menú que opera dentro de un *costate* y ofrece las distintas opciones que se pueden ejecutar.

Dentro de cada opción se pollea el switch aguardando la huella en el sensor, luego, una vez recibida esta señal, se envía el comando adecuado mediante la función *SendCmd()* y a continuación se ejecuta la co-función *GetResponse()* aguardando la respuesta.

Una vez que ésta función retorna, se parsea el búffer para luego desplegar los resultados.