SPECIFICATIONS

CUSTOMER	:	
SAMPLE CODE	:	
		(This Code will be changed while mass production)

MASS PRODUCTION CODE : PG9832LRS-ANN-H (VER.0)

Customer Approved

Date:

Sales Sign	QC Confirmed	Checked By	Designer
		Tom 2003/08/03 Naway S 2003/08/03	新成落 2003/08/03

Approval For Specifications Only.

Please contact Powertip or it's representative before designing your product based on this specification. Approval For Specifications and Sample.

Powertip Corporation

Headquarters:LCD Division:LCM Division:No.8, 6th Road, Taichung Industrial Park,TEL: 886-4-2355-6888TEL: 886-4-2355-8168Taichung, TaiwanFAX: 886-4-2355-6898FAX: 886-4-2355-8166台中市 407 工業區六路 8號E-mail: sales@display.powertip.com.twE-mail: sales@mail.powertip.com.twHttp://www.powertip.com.twHttp://www.powertip.com.tw

^{*} This specification is subject to change without notice.

RECORDS OF REVISION

Date	Rev.	Description	Note	Page
2003/08/03	0	Revised Contents		

Total: 26 Page

Contents

1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

4. RELIABILITY TEST

4.1 Reliability Test Condition

5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- 5.4 Terms of Warranty

Note: For detailed information please refer to IC data sheet: <u>SED1520</u>

1. SPECIFICATIONS

1.1 Features

Item	Standard Value
Display Type	98 * 32 dots
LCD Type	STN, GRAY, Transflective, Positive, Extended Temp.
Driver Condition	1/32 Duty , 1/6 Bias
Viewing Direction	6O' clock
Backlight	YG LED B/L
Weight	28.0 g
Interface	-
Other	-

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outline Dimension	52.0(L) * 44.0(w) * 13.5(H)(Max)	mm
Viewing Area	46.0(L) * 18.5(w)	mm
Active Area	43.08(L) * 15.64(w)	mm
Dot Size	0.40(L) * 0.45(w)	mm
Dot Pitch	0.44(L) * 0.49(w)	mm

Note: For detailed information please refer to LCM drawing

1.3 Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit
Power Supply Voltage	V_{DD}	-	-0.3	8.0	V
LCD Driver Supply Voltage	$V_{DD}V_{EE}$	-	-0.3	16.5	V
Input Voltage	$V_{\rm IN}$	-	-0.3	V _{DD} +0.3	V
Operating Temperature	T _{OP}	Excluded B/L	-20	70	
Storage Temperature	T_{ST}	Excluded B/L	-30	80	
Storage Humidity	H_D	Ta < 40	-	90	%RH

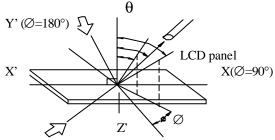
1.4 DC Electrical Characteristics

 $V_{DD} = 5.0~V \pm 10\%$, $V_{SS} = 0V$, Ta = 25

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply Voltage	V_{DD}	-	4.5	5.0	5.5	V
"H" Input Voltage	V_{IH}	-	V _{DD} +0.2	-	V _{DD}	V
"L" Input Voltage	V_{IL}	-	Vss	-	V _{DD} +0.8	V
"H" Output Voltage	V_{OH}	-	V _{DD} +2.4	1	-	V
"L" Output Voltage	V_{OL}	-	-	-	V _{DD} +2.4	V
Supply Current	I_{DD}	$V_{DD} = 5.0 \text{ V } f_{OSC} = 3.0 \text{MHz}$	-	0.5	-	mA
		V _{DD} - V _O (-20°C)	-	ı	-	
LCM Driver Voltage	V_{OP}	V _{DD} - V _O (25°C)	-	6.5	-	V
		V _{DD} - V _O (70°C)	-	1	-	

1.5 Optical Characteristics

LCD Panel : 1/64 Duty , 1/6 Bias , $V_{LCD}\!=\!\!6.36V$, Ta=25


Item	Symbol	Conditions	Min.	Тур.	Max.	Reference
View Angle	è	$C \ge 2.0, \varnothing = 0^{\circ}$	40°	1	1	Notes 1 & 2
Contrast Ratio	С	$\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$	5	7	-	Note 3
Response Time(rise)	tr	$\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$	-	150ms	-	Note 4
Response Time(fall)	tf	$\grave{e} = 5^{\circ}, \varnothing = 0^{\circ}$	-	280 ms	-	Note 4

Note 1: Definition of angles θ and \emptyset

Light (when reflected) $z (\theta=0^{\circ})$

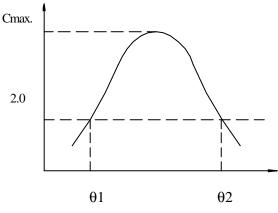
Sensor

Light (when transmitted) $Y(\varnothing=0^{\circ})$ $(\theta=90^{\circ})$

Note 3: Definition of contrast C

C = -

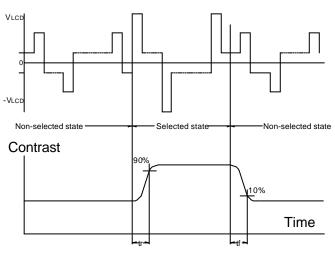
Brightness (reflection) of unselected dot (B2)


Brightness (reflection) of selected dot (B1)

Brighness (reflection) of selected dot

(%)

Brightness
(reflection) of unselected dot unselected dot operating voltage (v)


Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$

viewing angle θ (\emptyset fixed)

Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

Note 4: Definition of response time

Note: Measured with a transmissive LCD panel which is displayed 1 cm²

 V_{LCD} : Operating voltagef_{FRM}: Frame frequency t_r : Response time (rise) t_f : Response time (fall)

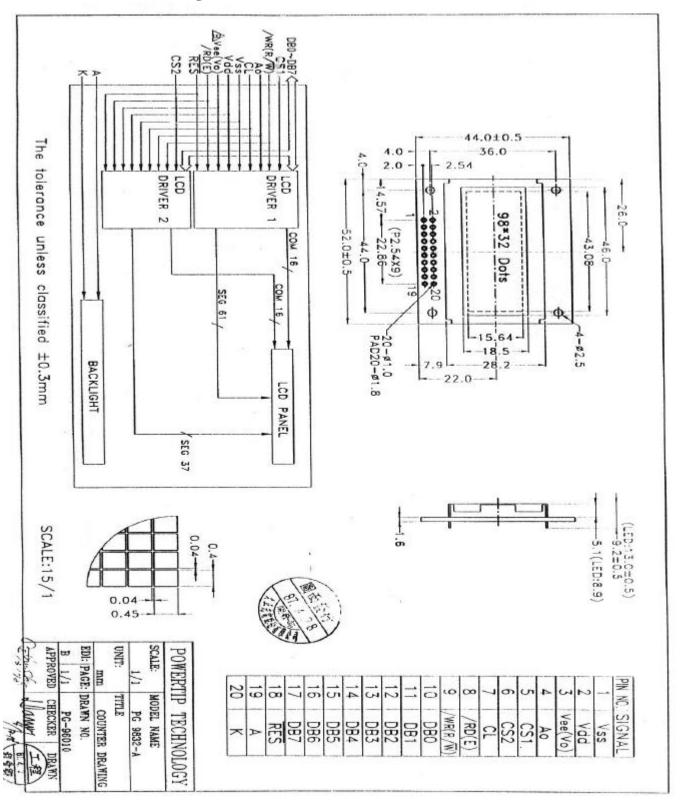
1.6 Backlight Characteristics

LCD Module with LED Backlight

Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward Current	IF	Ta =25	-	300	mA
Reverse Voltage	VR	Ta =25	-	8	V
Power Dissipation	PO	Ta =25	1	1.38	W
Operating Temperature	T_{OP}	-	-20	70	
Storage Temperature	T_{ST}	-	-30	80	
Solder Temp. for 3 Second	-	-	-	260	

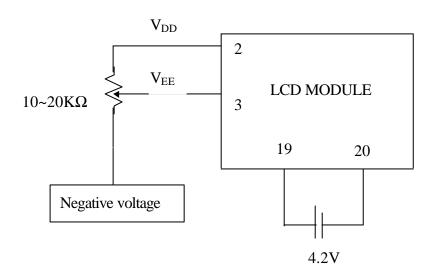
Electrical / Optical Characteristics


Ta =25

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	VF	IF= 120 mA	3.8	4.2	4.6	V
Reverse Current	IR	VR= 8 V	-	-	0.2	mA
Average Brightness (with LCD)	IV	IF= 120 mA	-	-	-	cd/m ²
Wavelength	p	IF= 120 mA	571	-	576	nm
Luminous Intensity (without LCD)	IV	IF=120 mA	200	250	-	cd/m ²
Color		Y	ellow-gree	n		_

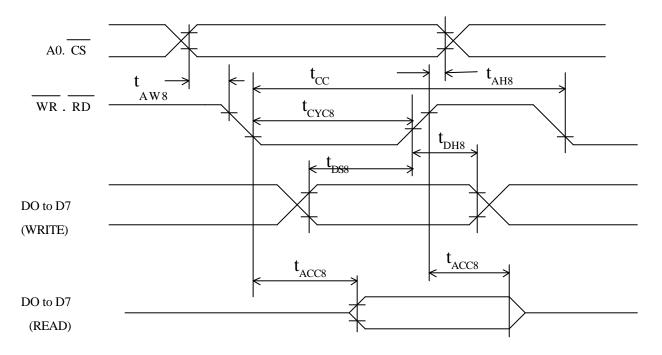
2. MODULE STRUCTURE

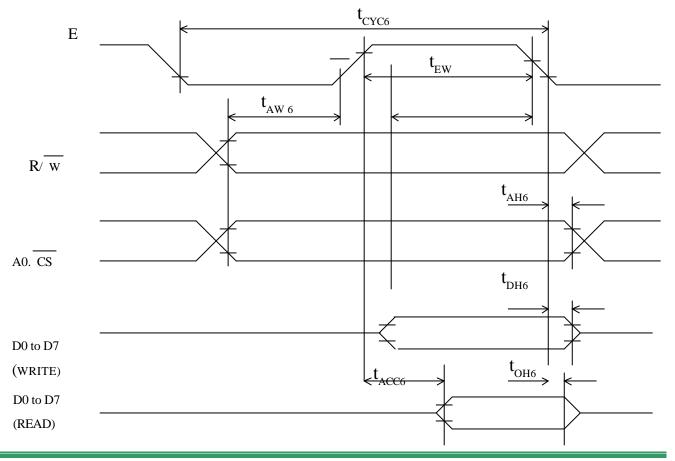
2.1 Counter Drawing



2.2 Interface Pin Description

Pin No	Symbol	Function
1	Vss	Power Supply (V _{SS} =0)
2	Vdd	Power Supply (V _{DD} >V _{SS})
3	VEE(VO)	Operating voltage for LCD (variable)
4	A0	"L" is instruction "H" is data
5	CS1	Chip enable active "L", segment 0~segment 61
6	CS2	Chip Enable active "L", segment 62~segment 98
7	CL	Clock input 2KHZ
8	/CS(E)	Data read (68-family MPU : Enable Signal)
9	/WR(R/W)	Data write (68-family MPU : Data read and write)
10-13	DB0~DB3	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module.
14-17	DB4~DB7	These four are not used during 4-bit operation. Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
18	RES	Reset the system
19	A	Power supply for LED backlight (+)
20	K	Power supply for LED backlight (-)


Contrast Adjust



2.3 Timing Characteristics

•.MPU Bus Read/Write I (80-family MPU)

• MPU Bus Read/Write II (68-family MPU)

•MPU Bus Read/Write I (80-family MPU)

$V_{DD}=+5V+10\%, V_{SS}=0V, T_{a}=25^{\circ}C$

Item	Symbol	Conditions	Min.	Max.	Unit
Address hold time	tAH8	-	10	1	ns
Address setup time	tAW8	-	20	1	ns
System cycle time	tCYC8	-	1000	-	ns
Control pulse width	tCC	-	200	ı	ns
Data setup time	tDS8	-	80	ı	ns
Data hold time	tDH8	-	10	ı	ns
RD access time	tACC8	CL=100 PF	-	90	ns
Output disable time	tCH8		10	60	ns

•MPU Bus Read/Write II (68-family MPU)

$V_{DD}=+5V+10\%$, $V_{SS}=0V$, $T_{a}=25$ °C

Item		Symbol	Conditions	Min.	Max.	Unit
System cycle tir	ne	tcyc6	-	1000	1	ns
Address setup ti	me	tAW6	-	20	ı	ns
Address hold tin	ne	tAH6	-	10	ı	ns
Data hold time	e	tDS6	-	80	-	ns
Data hold time	e	tDH6	-	10	-	ns
Output disable ti	me	tOH6	CL=100 PF	10	60	ns
Access time		tACC6		-	90	ns
Englela mulas vuidele	Read	417337	-	100	-	ns
Enable pulse width Write		tEW	-	80	-	ns

2.4 Display Command Summary

225pag 00						Code								
Command	A0	·RD	WR	D7	D6	D5	D4	D5	D2	D1	D0	Function		
Display	0	1	0	1	0	1	0	1	1	1	0/1	Turns display on or off.		
On/Off												1: ON, 0:OFF		
Display start	0	1	0	1	1	0	Displa	y sta	rt ad	dress((o to	Specifies RAM line corresponding to		
line							31)					top line of display.		
Set page	0	1	0	1	0	1	1	1	0	Page (o to 3)	Set s display RAM page in page addres		
address												register.		
Set column	0	1	0	0								Sets display RAM column address in		
(segment)						Colur	nn addr	ess (o to '	79)		Sets display RAM column address in column address register.		
address							T	1		1	T	column address register.		
												Reads the following status:		
												BUSY 1: Busy		
												0: Ready		
												ADC 1: CW output		
Read status	0	0	1	Busy	ADC	ON/OFF	Reset	0	0	0	0	0: CCW output		
												ON/OFF 1: Display off		
												0: Display on		
												RESET 1: Being reset		
												0: Normal		
Write display	1	1	0									Write data from data bus into display		
data						V	Vrite da	ta	_			RAM.		

Read display	1	0	1	Read data							Reads data from display RAM onto data bus.	
Gutu												045.
Select ADC	0	1	0	1 0 1 0 0 0 0				0	0/1	0: CW output, 1:CCW output		
Statis drive	0	1	0	1	0	1	0	0	1	0	0/1	Selects static driving operation.
ON/OFF												1:static drive, 0: Normal driving
Select duty	0	1	0	1	0	1	0	1	0	0	0/1	Selects LCD duty cycle
												1: 1/32, O: 1/16
Read-Modify-	0	1	0	1	1	1	0	0	0	0	0	Read-modify-write ON
Write												
End	0	1	0	1	1	1	0	1	1	1	0	Read-modify-write OFF
Reset	0	1	0	1	1	1	0	0	0	1	0	Software reset

Command description

Table 3 is the command table. The SED1520 series identifies a data bus using a combination of A0 and R/\overline{W} (RD or \overline{WR}) signals. As the MPU translates a command in the internal timing only (independent from the external clock). Its speed is very high. The busy check is usually not required.

Display ON/OFF

A0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	D ₀
0	1	0	1	0	1	0	1	1	1	D

AEH, AFH

This command turns the display on and off.

- D=1: Display OND=0: Display OFF
- **Display Start Line**

This command specifies the line address shown if Figure 3 and indicates the display line that corresponds to COM0.

The display area begins at the specified line address and continues in the line address increment direction. This area having the number of lines of the specified display duty is displayed. If the line address is changed dynamically by this command the vertical smooth scrolling and paging can be used.

A0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	D ₀
0	1	0	1	1	0	A4	Аз	A2	A1	Ao

C0H to DFH

This command loads the display start line register.

A4	А3	A2	A1	A0	Line Address
0	0	0	0	0	0
0	0	0	0	1	1
		:			:
		:			:
1	1	1	1	1	31

See Figure 2.

Set Page Address

This command specifies the page address that corresponds to the low address of the display data RAM when it is accessed by the MPU. Any bit of the display data RAM can be accessed when its page address and column address are specified. The display status is not changed even when the page address is changed.

AC	RD	R/W	D7	D6	D5	D4	D3	D2	D1	Do
0	1	0	1	0	1	1	1	0	A1	Α0

B8H to BBH

This command loads the page address register.

A1	Α0	Page
0	0	0
0	1	1
1	0	2
1	1	3

Set column Address

This command specifies a column address of the display data RAM. When the display data RAM is accessed by the MPU continuously, the column address is incremented by 1 each time it is accessed from the set address. Therefore, the MPU can access to data continuously. The column address stops to be incremented at address 80, and the page address is not changed continuously.

A0	RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	Do
0	1	0	0	A6	A5	A4	А3	A2	A1	Α0

00H to 4FH

This command loads the column address register.

Α	6	A5	A4	А3	A2	A1	Α0	Line Address
()	0	0	0	0	0	0	0
()	0	0	0	0	0	1	1
				:				:
				:				:
1	1	0	0	1	1	1	1	79

Read Status

A0	— RD	R/w	D7	D6	D5	D4	Dз	D2	D1	Do
		WR								
0	0	1	BUS	ADC	ON/OF	RESE	0	0	0	0
			Υ		F	Т				

Reading the command I/O register (A0=0) yields system status information.

- The busy bit indicates whether the driver will accept a command or not.
 - Busy=1: The driver is currently executing a command or is resetting. No new command will be accepted. Busy=0: The driver will accept a new command.
- The ACD bit indicates the way column addresses are assigned to segment drivers.
 - ADC=1: Normal. Column address $n \rightarrow \text{segment driver } n$.
 - ADC=0: Inverted. Column address 79-u \rightarrow segment driver u.

The ON/OFF bit indicates the current status of the display.
 It is the inverse of the polarity of the display ON/OFF command.

ON/OFF=1: Display OFF ON/OFF=0: Display ON

• The RESET bit indicates whether the driver is executing a hardware or software reset or if it is in normal operating mode.

RESET=1: Currently executing reset command.

RESET=0: Normal operation

Write Display Data

A0	RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	Do
1	1	0				Write	data			

Writes 8-bit of data into the display data RAM, at a location specified by the contents of the column address and page address registers and then increments the column address register by one.

Read Display Data

A0	RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	Do
1	0	1				Read	data			

Reads 8-bits of data from the data I/O latch, updates the contents of the I/O latch with display data from the display data RAM location specified by the contents of the column address and page address registers and then increments the column address register.

After loading a new address into the column address register one dummy read is required before valid data is obtained.

Select ADC

A0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	Do
0	1	0	1	0	1	0	0	0	0	D

A0H, A1H

This command selects the relationship between display data RAM column addresses and segment drivers.

D=1: SEG0 ← column address 4FH,...(inverted)

D=0: SEG0 ← column address 00H,...(normal)

This command is provided to reduce restrictions on the placement of driver ICs and routing of traces during printed circuit board design. See Figure 2 for a table of segments and column addresses for the two values of D.

Static Drive ON/OFF

A0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	D ₀
0	1	0	1	0	1	0	0	1	0	D

A4H. A5H

Forces display on and all common outputs to be selected.

D=1: Static drive on D=0: Static drive off

Select Duty

A0	RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	Do
0	1	0	1	0	1	0	1	0	0	D

A8H, ,A9H

This command sets the duty cycle of the LCD drive and is only valid for the SED1520F and SED1522F. it is invalid for the SED1521F which performs passive operation. The duty cycle of the SED1521F is determined

by the externally generated FR signal.

SED1520 SED1522

D=1: 1/32 duty cycle 1/16 duty cycle D=0: 1/16 duty cycle 1/8 duty cycle

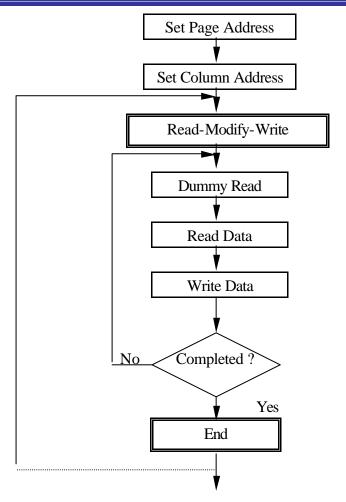
When using the SED1520F0A,SED1522F0A(having a built-in oscillator) and the SED1521F0A continuously, set the duty as follows:

		SED1521FoA
SED1520FOA	1/32	1/32
	1/16	1/16
SED1522FOA	1/16	1/32
	1/8	1/16

Read-Modify-Write

J J										
A0	RD	R/w	D7	D6	D5	D4	D3	D2	D1	D ₀
		WR								
0	1	0	1	1	1	0	0	0	0	0

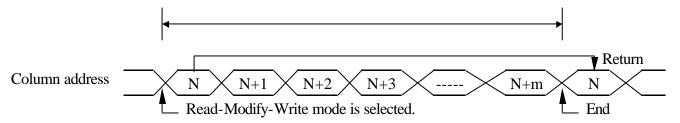
EOH


This command defeats column address register auto-increment after data reads. The current contents of the column address register are saved. This mode remains active until an End command is received.

• Operation sequence during cursor display

When the End command is entered, the column address is returned to the one used during input of Read-Modify-Write command. This function can reduce the load of MPU when data change is repeated at a specific display area(such as cursor blinking).

^{*} Any command other than Data Read or Write can be used in the Read-Modify-Write mode. However, the Column Address Set command cannot be used.



End

Α0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	1	1	1	0	1	1	1	0	EEH

This command cancels read-modify-write mode and restores the contents of the column address register to their value prior to the receipt of the Read-Modify-Write command.

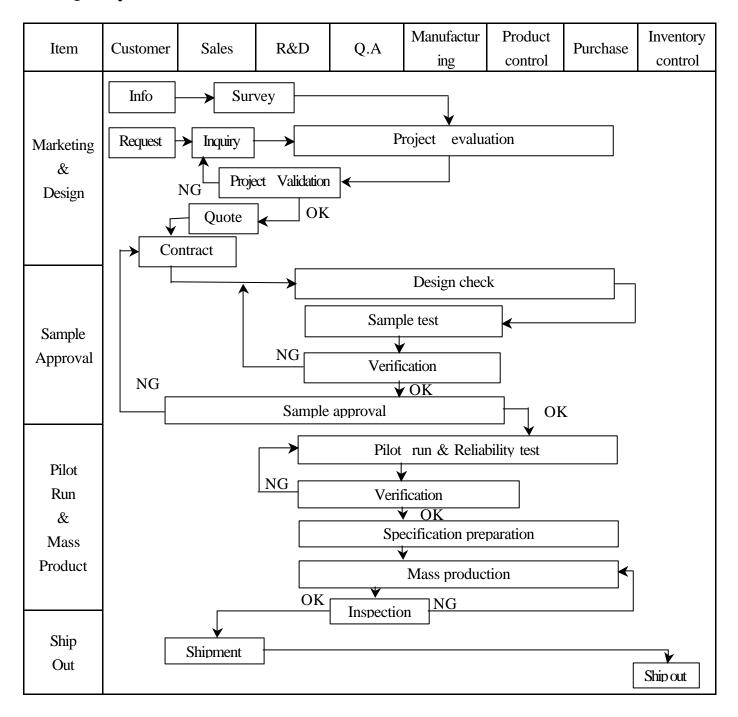
Page19

Reset

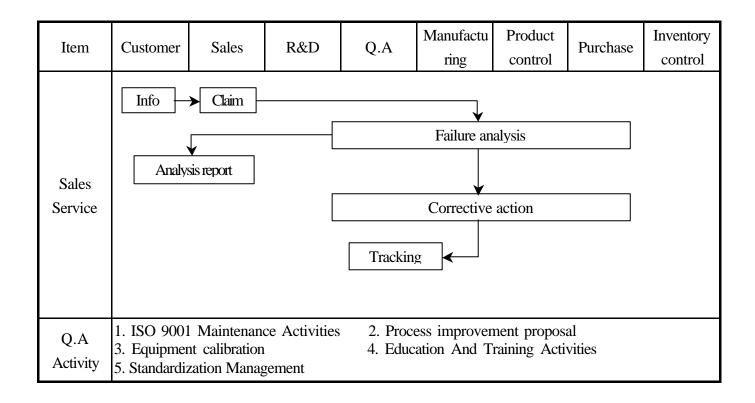
A0	RD	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

E₂H

This command clears


- the display start line register.
- and set page address register to 3 page.
 It does not affect the contents of the display data RAM.

When the power supply is turned on, a Reset signal is entered in the RES pin. The Reset command cannot be used instead of this Reset signal.



3. QUALITY ASSURANCE SYSTEM

3.1 Quality Assurance Flow Chart

3.2 Inspection Specification

Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level

Equipment: Gauge, MIL-STD, Powertip Tester, Sample,

IQC Defect Level: Major Defect AQL 0.4; Minor Defect AQL 1.5.

FQC Defect Level: 100% Inspection_o OUT Going Defect Level: Sampling_o

Specification:

NO	Item	Specification	Judge	Level
1	Part Number	The part number is inconsistent with work order of production	N.G.	Major
2	Quantity	The quantity is inconsistent with work order of production	N.G.	Major
	Electronic	The display lacks of some patterns.	N.G.	Major
	characteristics of	Missing line.	N.G.	Major
3	LCM	The size of missing dot, A is $> 1/2$ Dot size	N.G.	Major
	$A=(L+W) \div 2$	There is no function.	N.G.	Major
		Output data is error	N.G.	Major
		Material is different with work order of production	N.G.	Major
		LCD is assembled in inverse direction	N.G.	Major
		Bezel is assembled in inverse direction	N.G.	Major
		Shadow is within LCD viewing area + 0.5 mm	N.G.	Major
	Appearance of	The diameter of dirty particle, A is > 0.4 mm	N.G.	Minor
	Dirty particle	Dirty particle length is > 3.0mm, and 0.01mm < width 0.05mm	N.G.	Minor
4		Display is without protective film	N.G.	Minor
		Conductive rubber is over bezel 1mm	N.G.	Minor
	(Including scratch, bubble)	Polarizer exceeds over viewing area of LCD	N.G.	Minor
	scratcik bubble)	Area of bubble in polarizer, A > 1.0mm, the number of bubble is > 1 piece.	N.G.	Minor
		0.4mm < Area of bubble in polarizer, A < 1.0mm, the number of bubble is > 4 pieces.	N.G.	Minor
		Burned area or wrong part number is on PCB	N.G.	Major
		The symbol, character, and mark of PCB are unidentifiable.	N.G	Minor
		The stripped solder mask , A is > 1.0mm	N.G.	Minor
	Appearance of PCB A=(L+W) ÷ 2	0.3mm < stripped solder mask or visible circuit, A < 1.0mm, and the number is 4 pieces	N.G.	Minor
5		There is particle between the circuits in solder mask	N.G	Minor
		The circuit is peeled off or cracked	N.G	Minor
		There is any circuits risen or exposed.	N.G	Minor
		0.2mm < Area of solder ball, A is 0.4mm The number of solder ball is 3 pieces	N.G	Minor
		The magnitude of solder ball, A is > 0.4mm.	N.G	Minor

NO	Item	Specification	Judge	Level
		The shape of modeling is deformed by touching.	N.G.	Major
	Appearance of	Insufficient epoxy: Circuit or pad of IC is visible	N.G.	Minor
6	molding $A=(L+W) \div 2$	Excessive epoxy: Diameter of modeling is > 20mm or height is > 2.5mm	N.G.	Minor
		The diameter of pinhole in modeling, A is > 0.2mm.	N.G.	Minor
		The folding angle of frame must be $> 45 + 10$	N.G.	Minor
7	Appearance of frame	The area of stripped electroplate in top-view of frame, A is > 1.0mm.	N.G.	Minor
/	Appearance of frame $A=(L+W) \div 2$	Rust or crack is (Top view only)	N.G.	Minor
		The scratched width of frame is > 0.06mm. (Top view only)	N.G.	Minor
	Electrical	The color of backlight is nonconforming	N.G.	Major
		Backlight can't work normally.	N.G.	Major
8	characteristic of backlight	The LED lamp can't work normally	N.G.	Major
0		The unsoldering area of pin for backlight, A is > 1/2 solder joint area.	N.G.	Minor
	$A=(L+W) \div 2$	The height of solder pin for backlight is > 2.0mm	N.G.	Minor
		The mark or polarity of component is unidentifiable.	N.G.	Minor
		The height between bottom of component and surface of the PCB is floating > 0.7mm	N.G.	Minor
10	Assembly parts $A=(L+W) \div 2$	D > 1/4W W D D D Pad	N.G.	Minor
	(2) . 2	End solder joint width, D' is > 50% width of component termination or width of pad	N.G.	Minor
		Side overhang, D is > 25% width of component termination.	N.G.	Minor
		Component is cracked, deformed, and burned, etc.	N.G.	Minor
		The polarity of component is placed in inverse direction.	N.G.	Minor
		Maximum fillet height of solder extends onto the component body or minimum fillet height is < 0.5mm.	N.G.	Minor

4. RELIABILITY TEST

4.1 Reliability Test Condition

NO	Item	Test Co	ondition
1	High Temperature Storage	Storage at 80 ± 2 96~100 hrs Surrounding temperature, then storage 4hrs	ge at normal condition
2	Low Temperature Storage	Storage at -30 ± 2 96~100 hrs Surrounding temperature, then storage 4hrs	ge at normal condition
3	High Temperature /Humidity Storage	1.Storage 96~100 hrs 60 ± 2 , 90- temperature, then storage at norma (Excluding the polarizer). or 2.Storage 96~100 hrs 40 ± 2 , 90- temperature, then storage at norm	al condition 4hrs. ~95%RH surrounding
4	Temperature Cycling		70 25 (30mins) (5mins) Cycle
5	Vibration	· ·	ninute) 1.5mm on * (each 2hrs)
6	ESD Test	Air Discharge: Apply 6 KV with 5 times discharge for each polarity +/- Testing location: Around the face of LCD	Contact Discharge: Apply 250V with 5 times discharge for each polarity +/- Testing location: 1.Apply to bezel. 2.Apply to Vdd, Vss.
7	Drop Test	Packing Weight (Kg) 0 ~ 45.4 45.4 ~ 90.8 90.8 ~ 454 Over 454	Drop Height (cm) 122 76 61 46

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
 - 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully ,do not touch , push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.
 - 5.2.8 To control temperature and time of soldering is 280 ± 10 and 3-5 sec.
 - 5.2.9 To avoid liquid (include organic solvent) stained on LCM.

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is 25 ± 5 and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

5.4 TERMS OF WARRANTY

- 5.4.1 Applicable warrant period
 - The period is within thirteen months since the date of shipping out under normal using and storage conditions.
- 5.4.2 Unaccepted responsibility
 - This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.